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Comment on ‘‘Dynamics of some neural network models with delay’’
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Based upon numerical evidence, Ruanet al. @J. Ruan, L. Li, and W. Lin, Phys. Rev. E63, 051906~2001!#
suggest that the delay differential equationdx/dt(t)52x(t)1A tanh@x(t)#1B tanh@x(t2t)# may display cha-
otic dynamics. As mentioned by Pakdaman and Malta@IEEE Trans. Neural Netw.9, 231~1998!#, this equation
presents a monotonic delayed feedback, so that it satisfies a Poincare´-Bendixson-like theorem, ruling out the
existence of complex aperiodic dynamics.
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In Ref. @1#, the dynamical threshold neuron model with
single delay was transformed into the following delay diffe
ential equation:

dx

dt
~ t !52x~ t !1A tanh@x~ t !#1B tanh@x~ t2t!#, ~1!

wheret is the delay.
Gopalsamy and Leung@1# proved that forA.0, B,0,

and (A2B),1, Eq. ~1! is globally asymptotically stable
Pakdaman and Malta@2# discussed the dynamics of Eq.~1!
in other parameter regions and determined the param
ranges where most trajectories stabilize at equilibria,
those where the delay leads to stable periodic oscillatio
This description exhausted all possible asymptotic dynam
for Eq. ~1!.

Ruanet al. @3# have further investigated the dynamics
the system~1! in the A,B parameter space, as a function
the delayt. Their analytical results are obtained using a ve
nice method that involves a Lyapunov functional, and are
total agreement with our results in Ref.@2#. However, based
on numerical simulations, they suggested that the system~1!
may exhibit chaotic dynamics. The existence of chaos w
ruled out in Ref.@2# because for monotonic delayed fee
back, the Poincare´-Bendixson theorem@4# applies, implying
that the asymptotic dynamics of Eq.~1! cannot be more com
plex than those of a two-dimensional system. This preclu
the existence of chaos in system~1!.

In Fig. 1, we display the time series, and the correspo
ing projectionx(t) versusx(t2t), for the three cases o
presumed chaotic dynamic presented in Ref.@3#. In the ab-
sence of any information regarding the numerical meth
used in@3#, we did the calculation with two numerical meth
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ods, namely, the first order explicit Euler scheme, and the
order Runge-Kutta scheme adapted to Eq.~1!. Both numeri-
cal methods produced the same results. As we can see
the left column in Fig. 1, in all cases the oscillation is pe
odic. Also, as predicted by the Poincare´-Bendixson theorem,
the projection of the periodic solution onto thex(t)2x(t
2t) plane forms a closed loop, similar to a planar lim
cycle, in the sense that the projected trajectory does not c
itself ~right column in Fig. 1!.

In addition, given that a single neuron with monoton
feedback cannot exhibit chaotic dynamics, this will also
true in the special case of two noninteracting neurons w
monotone feedback for which Ruanet al. @3# presented nu-
merical evidence of chaotic dynamics. In conclusion,
aperiodic chaoticlike dynamics reported by Ruanet al. @3#
are not supported by the analytical results on delay differ
tial equations with monotonic feedback. It is likely that the
behaviors are specific to the numerical method used by R
et al. @3# to approximate the solution of the delay differenti
equation. It should be remarked that the Gear three-s
method used by Malta and Teles@5# is not applicable to Eq.
~1! due the presence of the instantaneous nonlinear t
A tanh@x(t)# ~instantaneous feedback loop!. Investigations of
the Runge-Kutta method applied to delay differential eq
tions can be found in Ref.@6#, for instance.

Finally, any scalar delay differential equation with
single delayed monotonic feedback loop@like Eq. ~1!# con-
stitute a good test case for any numerical method: if
solutions obtained numerically exhibit a dynamical behav
that is not in agreement with the description provided
Pakdaman and Malta@2#, then either the computer code ha
errors or the numerical method is not suitable.
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FIG. 1. Left column shows the time series of activationx(t) against time; right column shows activationx(t) versusx(t2t) ~abscissas
and ordinates in arbitrary units!. Top panel showsA51.0, B52100.0, witht50.028; middle panel showsA5220.0, B5250.0, with
t50.06; bottom panel showsA513.5373,B5211.4627, witht53.90. The calculations were done with time stept/1000, using the same
initial conditions of Ruanet al. @3#.
043901-2



.
.

COMMENTS PHYSICAL REVIEW E 66, 043901 ~2002!
@1# K. Gopalsamy and I.K.C. Leung, IEEE Trans. Neural Netw.8,
341 ~1997!.

@2# K. Pakdaman and C.P. Malta, IEEE Trans. Neural Netw.9, 231
~1998!.

@3# J. Ruan, L. Li, and W. Lin, Phys. Rev. E63, 51906~2001!.
@4# J. Mallet-Paret and G.R. Sell, J. Diff. Eqns.125, 441 ~1996!.
04390
@5# C.P. Malta and M.L.S. Teles, IMA J. Appl. Math.3, 379
~2000!.

@6# C.W. Cryer, inDelay and Functional Differential Equations
and their Applications, edited by Klaus Schmitt~Academic
Press, New York, 1972!, pp. 17–101; C.A.H. Paul, Ann. Phys
~N.Y.! 9, 403 ~1992!; C.A.H. Paul and C.T.H. Baker, IMA J
Numer. Anal.14, 347 ~1994!.
1-3


